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Abstract. Within the framework of the time-dependent local-density approximation (TDLDA) and the
spherical background jellium model, we have estimated the photoionization cross sections for a medium-size
closed-shell sodium cluster, Na20. We have also introduced a self-interaction correction to ensure the cor-
rect asymptotic behaviour of the potential seen by the ejected electron. Our results show that in contrast to
the photoexcitation process, the photoionization cross sections are very sensitive to the approximation used
to describe the cluster electrons. Futhermore, many-electron correlations are found to be very large. Simi-
larly to the atomic case, when correct asymptotic conditions are taken properly into account, cross sections
exhibit many one-electron autoionization resonances.

PACS. 36.40.Gk Plasma and collective effects in clusters – 32.80.Dz Autoionization

1 Introduction

If the photon energy of an excited quantum system exceeds
the binding energy, photoelectron emission can occur. In
contrast with the the photoexcitation process of simple
metal clusters, which has been extensively studied in the
past, only a few theoretical works have been devoted to
the study of the photoionization process [1–3]. The exis-
tence of many active electrons in the cluster implies that
one must use a truly many-electron theory. Thus, from the
theoretical point of view, this process is of fundamental in-
terest, since it provides a very powerful tool for studying
many-electron correlations in finite quantum systems.

We know from atomic physics that one can never reach
a good agreement between theoretical predictions and ex-
perimental results for photoionization cross sections if elec-
tronic correlation effects are not taken into account in
the theoretical models (e.g., RPA, MBPT, and TDLDA).
Under the condition that the external field is weak, the
simplest way to implement such a theory is to work in the
framework of the time-dependent local-density approxima-
tion (TDLDA). This latter approximation has been used
with success for the first time by Zangwill and Soven [4] for
the study of photoionization in rare gases. Futhermore, this
formalism has been also successfully extended to the study
of photoinization of molecules [5]. Recently, in the context
of atomic physics and density functional theory, Stener
et al. [6] have shown the importance of using exchange-
correlation potentials with correct asymptotic behaviour.
In fact, since these potentials are able to support virtual
Rydberg states, it allows one to consider one-electron ex-
citation resonances (Feshbach resonances, autoionization
resonances) during photoionization. The shape of these

resonances are characterized by the so-called Fano pro-
file [7]. The aim of the present work is to find answers
to the following questions: What is the importance of
the many-electron correlations in the photoinization pro-
cess when alkali-metal clusters are investigated? Do the
photoinization cross sections exhibit autoionization reso-
nances when correct asymptotic conditions and an N-body
theory are used? Our goal is also to provide quantitative
photoionization cross sections in order to stimulate future
experiments.

Closed-shell simple metal clusters are usually well de-
scribed by the spherical jellium model [8], which consists
in the replacement of the real ionic core potential by
a constant positive background. Within this model and
the TDLDA method, we have estimated photoionization
cross sections for a medium-size closed-shell sodium clus-
ter, Na20. In order to ensure the correct asymptotic be-
haviour of the potential seen by the ejected electron, a self-
interaction correction (SIC) has also been introduced. Our
theoretical approach is briefly outlined in the next section.
Results concerning the closed-shell neutral cluster Na20 as
well as a conclusion are given in Sect. 3. Atomic units are
used unless otherwise specified.

2 Theoretical method

2.1 Cluster description

The cluster is described in the spherical background jel-
lium model. This model consists in the replacement of the
real ionic core potential by a constant positive background
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corresponding to a uniformly distributed charge density.
For a metal cluster havingA singly charged ionic cores, this
potential is given by

Vjel(r) =
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2RC

[
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]
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, (1)

where RC = A1/3rs and rs is the Wigner–Seitz radius. In
the Kohn–Sham formulation of density functional theory,
the ground-state electronic density %C of an N -electron
system is written in terms of single-particle orbitals φi:

%C(r) =
N∑
i=1

%i(r) =
∑
i

|φi(r)|2 . (2)

These orbitals obey the Schrödinger equation[
−

1

2
∇2 +VKS(r)

]
φi(r) = εiφi(r) , (3)

where VKS(r) is an effective single-particle potential given
by

VKS(r) = Vjel(r) +VH(%C(r)) +Vxc(%C(r)) , (4)

where VH(%C(r)) is the Hartree potential and Vxc(%C(r))
the exchange-correlation potential. Since the form of Vxc

is not known in general, several approximations have been
proposed in the literature. In this work, we have used the
form obtained by Gunnarsson and Lundqvist [9] in the
framework of the local-density approximation (LDA):

Vxc(%C(r)) =−

(
3%C(r)

π

)1/3

−0.0333 log

(
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11.4
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)
(5)

where rs(r) = [3/4π%C(r)]1/3 is the local Wigner–Seitz ra-
dius. For a neutral cluster, the asymptotic behaviour of
VKS is given by the exchange contribution to Vxc, which
behaves at large distance as %C(r)

1/3
. As a consequence,

the Kohn–Sham potential VKS decreases exponentially to
zero, i.e., it does not reproduce the correct 1/r asymptotic
behaviour. This problem does not appear in the Hartree–
Fock (HF) theory, because the HF exchange potential ex-
actly compensates the self-interaction term contained in
the Hartree potential. Following Perdew and Zunger [14],
we have added a self-interaction correction (SIC) that re-
stores the correct asymptotic behaviour of the potential
(we will call this method LDA-SIC). This procedure has
been succesfully applied to the study of both ground- and
excited-state properties of small metal clusters [10–13].
The corrected Kohn–Sham potential V iSIC is then given by

V iSIC(r) = Vjel(r) +

∫
[%C(r′)−%i(r′)]dr′

|r− r′|

+Vxc[%C(r)]−Vxc[%i(r)] , (6)

where %i is the i single-particle density defined in (2). It
is easy to check that, as in HF theory, the resulting po-
tential has the correct −1/r behaviour at large distances.
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Fig. 1. Comparison between the V isic potentials and the LDA
one for Na20. The function −1

R is also shown, broken curve.

Table 1. Ionization potential (in eV) of the occupied single-
particle states of Na20 calculated in the approximations LDA
and LDA-SIC.

Orbital LDA LDA-SIC

1s 5.109 6.340
1p 4.393 5.415
1d 3.440 4.327
2s 2.810 3.837

Notice also that the V iSIC potential is now explicitly state-
dependent. It should be noted that, because the potential
is orbital dependent, the various ground-state orbitals are
no longer orthogonal. However, the work of Perdew and
Zunger [14] indicates that the degree of nonothogonality is
very small. Consequently, we do not minimize the LDA-
SIC functional under the orthogonality constraint, and we
assume that this will not change appreciably the presented
results. Figure 1 shows a comparison between the original
LDA potential and the calculated V iSIC potentials for the
occupied orbitals 1s, 1p, 1d, and 2s of Na20. The corres-
ponding ionization potentials are given in Table 1.

2.2 Time-dependent local-density approximation and
photoionization cross section

If the system is in a weak external field of frequency ω, the
theory of the linear response relates the induced electronic
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density δ%(r;ω) to the external potential Vext(r;ω) by the
relation

δ%(r;ω) =

∫
χ(r, r′;ω) Vext(r

′;ω) dr′, (7)

where χ(r, r′;ω) is the dynamic response function. For the
photoinization process, Vext(r;ω) takes the form

Vext(r;ω) =
Ne∑
j=1

√
4π

3
Vext(rj) Y10(r̂j) =

Ne∑
j=1

zj , (8)

where Ne is the number of electrons in the cluster, and
Vext(r) = r is the radial part of Vext.

One defines also the self-consistent field VSCF(r;ω) as

VSCF(r;ω) = Vext(r;ω) +Vind(r;ω), (9)

where Vind(r;ω) is the induced field given by

Vind(r;ω) =

∫
δ%(r;ω)

|r− r′|
dr′

+

[
∂Vxc

∂%

]
%=%C

δ%(r;ω). (10)

The SCF potential has a spatial dependence of VSCF(r;ω)=
VSCF(r;ω)P1(cos θ). All the theoretical and technical de-
tails concerning the TDLDA applied to the photoioniza-
tion process can be found in [1, 4].

In the dipole approximation, the independent-particle
(LDA and LDA-SIC) photoionization cross section from an
nl initial closed-subshell state to a εl′ final continuum state
is given by the usual expression

σnl(ω) =
4π2ω

3c

Nnl

(2l+ 1)

∑
l′=l±1

∣∣dnl,εl′ ∣∣2, (11)

with

dnl,εl′ =
√

(2l+ 1)(2l′+ 1)
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)
×

∫ ∞
0

Pnl(r)Vext(r)Pεl′(r), (12)

and where Nnl is the number of electrons in the nl sub-
shell. As usual, the bound-state wave function is expanded
as φi(r) = Pnl(r)

r
Ylm(r̂) and the continuum wave function

Pεl behaves asymptotically as

Pεl(r)
r→∞
∼ [cos(δl)Fl(kr) + sin(δl)Gl(kr)]
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)
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where the functions Fl(kr) and Gl(kr) are the regular
and irregular spherical Coulomb functions respectively as-
sociated to the asymptotic charge z seen by the ejected
electron and ∆l = σl + δl, with the Coulomb phase shift
σl = argΓ(l+ 1− i z

k
). The total photoionization cross sec-

tion is obtained from σnl by summation over all the initial
states

σ(ω) =
∑
nl

σnl. (14)

The difference between LDA and TDLDA comes from
the difference between using the external potential of Vext

and that of VSCF. The self-consistent potential includes
the phenomenon of screening. The time-dependent electric
field coming from the photon is screened by the valence
electrons of the metal cluster and, as we will see in the
next section, this screening is important and is frequency-
dependent. Thus, when many-electron correlations are in-
cluded, the TDLDA partial photoionization cross section is
calculated from (11) and (12) using VSCF(r;ω) instead of
Vext(r). It should be mentioned that VSCF(r;ω) is a com-
plex function, whereas Vext(r;ω) is real.

3 Results and conclusion

In Figs. 2 and 3 the predictions of the total photoioniza-
tion cross section for Na20 as a function of photon energy
are presented. The comparison is made between the LDA
(independent particle model) and the TDLDA (N-body
model) results. The photon impact energy ranges from the
2s ionization potential to approximatively 0.5 eV above the
1s ionization potential (see Table 1). Figure 2 shows the
results from wrong asymptotic conditions, whereas those
with the self-interaction correction are reported in Fig. 3.
One immediately notes the very important difference ex-
isting (notice the logarithm scale on the figures) between
the TDLDA cross sections and the LDA ones. As the pho-
ton impact energy increases, this discrepancy becomes less
and less important. The matrix elements (12) depend upon
the real and the imaginary part of the self-consistent field
potential VSCF(r;ω). We have checked that, in the pho-
ton energy range considered here, the real part of the self-
consistent field is mostly larger than the external potential.
Therefore, the antiscreening (i.e., the fact that the induced
potential Vind(r;ω) in (9) is repulsive) is always domin-
ant, which leads to TDLDA cross sections larger than the
LDA ones.

Concerning the independent-particle results, we see
that in contrast with the LDA cross section, which van-
ishes at threshold, we find for the LDA-SIC cross section
a finite threshold value. This is a well-known striking
feature of final-state interaction effects appearing at low
energies [15]. As can be clearly seen from Fig. 3, the open-
ing of 1d and 1p ionization channels is characterized by
a step function in the cross section. Compared to LDA, the
SIC leads to many more unoccupied bound states (mainly
Rydberg states) since, in this approximation, the effective
cluster potential has an asymptotic Coulombic behaviour.
Therefore, the final-state level density increases, leading to
a more fragmented oscillator strength and, as in the atomic
case, the TDLDA-SIC cross section exhibits many sharp
one-electron autoionization resonances. These resonances
are the consequence of a quantum interference between
the direct ionization process and discrete excitations. Since
in the LDA, the mixing between different channels is not
allowed, either an LDA or LDA-SIC cross section does
not display the resonances. Also due to the Coulomb tail
(−1/r) of the effective potential, the ejected electron expe-



220 The European Physical Journal D

3 4 5

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

1s1p1d

Photon energy (eV)

C
ro

ss
 S

ec
ti

o
n

  
(a

.u
.)

Fig. 2. Total photoionization cross section for Na20 as a func-
tion of photon energy ω. TDLDA results, full curve; LDA,
broken curve. The arrows at the bottom of the figure indicate
the ionization thresholds of the occupied orbitals.

riences an attractive force and therefore, at a given photon
energy, the LDA-SIC and TDLDA-SIC photoionization
cross sections are smaller than the LDA and TDLDA ones.

The comparison between the TDLDA and TDLDA-
SIC results allows us to conclude that in contrast to the
photoexcitation process, the photoionization cross sections
are very sensitive to the approximation used to describe
the delocalized electrons of the cluster. In order to un-
derstand this difference, we propose the following expla-
nations. First, in the TDLDA-SIC photoexcitation cross
section (PECS), the largest part of the oscillator strength
is situated around 2.5 eV (corresponding to the collective
excitation of the surface plasmon), well below the first ion-
ization potential (which is given by the energy of the 2s
orbital, 3.84 eV (see Table 1)). Thus, the excited states in-
volved in the collective excitation are not localized near
the continuum, and therefore the Rydberg states which are
specific to the self-interaction correction play a minor role
in the photoexcitation process (TDLDA and TDLDA-SIC
PECS exhibit similar shapes). Second, since the dramatic
changes which appeared in the photoionization cross sec-
tion are due to an interference process between one bound–
continuum transition and one bound–bound transition, it
seems very unlikely for one to find two bound–bound tran-
sitions with exactly the same energy leading to a dramatic
change in the photoexcitation cross section.

It is also interesting to estimate the contribution of the
photoionization to the Thomas–Reiche–Kuhn sum rule. In
the LDA, the ionization potential (IP) is not simply re-
lated to Kohn–Sham eigenvalue of the highest occupied
(HO) orbital, but rather is given by the difference between
the ground-state energies of the positively charged cluster
and the neutral one. Indeed, the 2s LDA eigen-energy of
Na20 (2.81 eV see Table 1) underestimates considerably the
experimental IP (3.77 eV) [16]. Furthermore, similarly to
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Fig. 3. Total photoionization cross section for Na20 as a func-
tion of photon energy ω. TDLDA-SIC results, full curve; LDA-
SIC, broken curve. The arrows at the bottom of the figure
indicate the ionization thresholds of the occupied orbitals.

Koopman’s theorem in HF theory, the energy of the (HO)
orbital resulting from “exact” Kohn–Sham calculations is
an excellent approximation of the cluster ionization poten-
tial. In fact, it is also a good approximation for the approx-
imate LDA-SIC theory, as illustrated by the good agree-
ment between the 2s energy (3.84 eV see Table 1) and the
experimental IP. This means that, in this approximation,
the eigenvalue and eigenfunction associated to the HO or-
bital can be interpreted as the particle energy and wave
function, respectively. It turns out that, in the TDLDA
PECS, the oscillator strength is fragmented mainly into
two contributions at energies 2.67 eV and 2.96 eV, respec-
tively [11]. Thus, since the energy of the 2s orbital is lo-
cated at an energy smaller than the second maximum of
the PECS, a large part (57%) of the sum rule comes from
the photoionization process. As already discussed at the
beginning of this paragraph, this is not surprising, since
standard LDA does not seem to be an adequate theory for
the description of the photoionization process. On the con-
trary, in the TDLDA-SIC PECS, the largest part of the
oscillator strength is situated at energies smaller than the
energy of the 2s orbital, which leads to a contribution of
the photoionization to the Thomas–Reiche–Kuhn sum rule
of about 9%. Thus, with this correction (SIC), most of the
sum rule is contained in the photoexcitation process; this
is in agreement with what is known from other works on
plasmon response.

Evaluation of photoionization cross sections for other
neutral and charged closed-shell alkali-metal clusters is
already in progress, and the results will be presented in
a forthcoming paper. Finally, we hope that experimenters
in the near future will be able to measure photoioniza-
tion cross sections of simple metal clusters and the as-
sociated autoionization resonances that are predicted by
the present theory, in order that we may gain a better
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understanding of the role played by the many-electron cor-
relations on the photoionization process.
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